<dfn id="zrplh"><dfn id="zrplh"></dfn></dfn>

<pre id="zrplh"><track id="zrplh"><progress id="zrplh"></progress></track></pre>
    <sub id="zrplh"></sub>
    <listing id="zrplh"><menuitem id="zrplh"></menuitem></listing>

    <track id="zrplh"></track>

    <noframes id="zrplh">

      <form id="zrplh"><sub id="zrplh"></sub></form>
      首页 >> 科研前線 >>PEA植物效率分析儀 >> OJIP曲線和JIP-test在植物干旱脅迫研究中的應用
      详细内容

      OJIP曲線和JIP-test在植物干旱脅迫研究中的應用

      歡迎關注「漢莎科學儀器」微信公眾號!

      1603329205740968.png

      1 總述

      干旱脅迫對植物光合效率產生負面影響,干擾氣孔功能,影響同化物質的積累和運輸[1,2,3,4,5]。植物受到干旱脅迫會激活各種機制避免缺水造成的負面影響[6,7]。缺水限制了植物碳代謝和光反應產物的利用,使得大量吸收的光能不能被轉化為化學能,從而導致PSⅡ受到破壞[3,8,9,10]。此外水分限制同樣會影響植物葉綠素含量[11,12]。干旱脅迫下大麥植株光合效率的降低可能是由于氮、磷、鉀和鐵元素的缺乏所造成[13],隨之而來會造成PSII蛋白脫磷酸化增加,LHCII蛋白(如b4和CP29)快速磷酸化[14]。

      1.1 干旱脅迫對光系統PSII的影響

      與PSII相比,PSⅠ對水分虧缺具有更高的耐受性,只有在極端干旱條件下才會出現負面效應[15,16,17]。對幾種生態型椰子(Cocos nucifera L.)進行的試驗研究表明,干旱脅迫限制了光能的吸收和PSII的最大量子產率,降低了電子傳輸速度和羧化效率[18]。同樣,在進行性干旱期間,桑樹(Morusindica L.)觀察到由于非活性RCs的增加、電子傳遞減少和能量耗散增強而導致的PSII活性降低[19]。在小麥[20,21,22]、橄欖[23]、葡萄[11]以及一些沙漠灌木的葉片中[24,25]也發現了PSII的最大量子產量下降。
      在灌木中,還觀察到CO2同化減少和電子傳輸受到抑制[25]。二氧化碳同化減少可能導致PSII光化學活性與NADPH需求之間的不平衡。在這種情況下,活性氧(ROS)的產生增加,這可能是PSII對光破壞敏感性增加的原因[26]。在多數情況下,葉綠素熒光測量表明,通過調整光系統之間的能量分配和激活替代電子流,增強了對PSII和PSI光化學的保護[27,28]。

      1603329240513090.png

      1.2 干旱脅迫和熱脅迫的關系

      在自然界中,強烈的光照輻射伴隨著高溫和缺水,可能會發生慢性光抑制[16]。事實上,干旱和高溫是影響農業地區作物生長和產量的兩大非生物脅迫,眾所周知,它們一般同時發生。干旱和熱脅迫的聯合效應與它們單獨作用時觀察到的不同,表明這兩種應激源以不同的方式影響新陳代謝[29,30,31]。
      González Cruz和Pastenes證明,與脅迫敏感大豆品種Arroz Tuscola相比,干旱脅迫下的抗逆性大豆品種Orfeo INIA具有更高的耐熱性。作者討論了葉黃素、脂類和脂肪酸成分在提高大豆葉片耐高溫性中的可能作用。干旱脅迫下葉片與高溫的相互作用對PSII的影響已被廣泛研究,普遍表明干旱脅迫下使得葉片PSII的熱穩定性增強[31,32,33]。
      植物的干旱脅迫和熱脅迫之間存在拮抗效應。事實上,可能是由于植物在脅迫環境下某些滲透調節物質(如脯氨酸)的積累提高了植物對高溫的耐受性[34]。此外,如圖1所示,OJIP曲線中K峰消失表明干旱脅迫可能會增強PSII對熱脅迫的耐受能力[31]。

      3.png

      1.暗適應條件下大麥OJIP曲線。大麥培育2周后,無水干旱處理2周。對照組和干旱處理組離體葉片45℃熱處理10min,適應環境溫度5min后,測定葉綠素熒光[31]。

      1603329324209880.png

      2 干旱脅迫對植物OJIP曲線和JIP-test參數的影響

      葉綠素熒光JIP-test方法用于檢測植物干旱脅迫,可獲取植物組織和器官在水分脅迫條件下光合作用過程的重要信息[4,35,36,37]。而目前,水分脅迫對植物光合機構影響導致的熒光參數的變化尚未有統一定論[4,21,22,38]。

      2.1 L&K峰

      JIP-test方法可作為篩選耐旱性基因型作物品種的有效工具[19,39,40,41]。干旱脅迫可以直接或間接影響植物的光合活性,從而改變葉綠素熒光動力學曲線。OJIP曲線2~3ms的熒光上升階段與原初光化學反應相關,L峰和K峰可作為評價植物耐旱潛力的有力工具[42]。L峰受PSII各組分間能量轉移的連通性影響[43]。K峰的出現與放氧復合體(OEC)的解離相關[44]。O-L-K-J-I-P熒光瞬態的測量和JIP-test可作為干旱脅迫出現前耐旱性和生理紊亂的潛在指標。

      1603329491560917.png

      2.2 性能指數PI(performance index)

      性能指數PI是OJIP曲線中為人熟知的一個重要參數,是植物狀態和活性的定量參數。PI由三個獨立的表達式組成:單位葉綠體活性反應中心的數量,原初光化學反應的有關的表達式和一個與電子傳遞相關的表達式[45]。因此,PI易受到天線色素活性、捕獲效率和電子傳遞效率發生的任何輕微變化的影響。PI對冬小麥的持續干旱脅迫敏感[46]。根據干旱脅迫下記錄的PI值評估的小麥基因型的耐旱性與糧食產量評定的結果高度一致[47]。

      1603329527135222.png

      PI與干旱因子指數(DFI)密切相關,能夠顯示不同基因型植物對干旱反應的巨大差異。DFI是指在任意干旱脅迫時間內,干旱引起的PI相對降低量。Strauss等人于2006年即運用相似定義CFI(Chill Factor Index)檢測不同大豆基因型的耐寒性。DFI還用于10個大麥品種(圖2)[42]和21個芝麻突變體種質[48]在干旱脅迫下的特性鑒定。利用性能指數PI和OJIP曲線確定了埃及雙色大麥和高粱**耐性和最敏感的地方品種[49]。這些研究證明在PSII水平上區分耐旱品種和敏感品種是可能的。

      8.png

      2. 10個大麥品種在連續兩周干旱脅迫下干旱因子指數(DFI)與驅動力(DF)的關系。每個基因型都由表中代碼表示[42]。


      2.3 I~P相
      干旱脅迫對植物光合系統產生許多影響。干旱脅迫下ABS/RC比率的增加[41,50],這可能是由于某些PSII RCs失活或天線尺寸增加所致。RCs的失活是對光抑制敏感的一個指標。這意味著在干旱時期,光化學活動會降低,把吸收的多余的光通過熱耗散進行消散。此外干旱脅迫會影響OJIP曲線中I~P相位的相對振幅。I~P相為快速葉綠素熒光上升的最慢階段(約30~200 ms),與質體籃素PC+和PSⅠ中P700+的還原相關[51,52]。I~P相似乎與通過820nm透射測量的PSⅠ反應中心數量相關[53]。此外已證明,不同大麥品種I~P相振幅的變化與其耐旱性相關[53,54]。

      2.4 延遲熒光

      1603329578486817.png

      葉綠素熒光ChlF是在光合樣品由暗到光轉換后發射的,而延遲熒光則是由光到暗轉換期間檢測得到[55,56,57]。延遲熒光**由Strehler和Arnold于1951年報道,是由PSII所發射。DF被認為反映了光誘導電荷分離后,還原的初級電子受體QA-與氧化的電子供體P680+的再復合。DF誘導曲線的形狀取決于樣品類型及其生理狀態。同時測量葉綠素Chl a熒光(即時熒光,PF)、延遲熒光DF、在820nm處調制反射MR820和遠紅光(735nm)反射RR的試驗設備已開發出來(Hansatech, M-PEA),可獲得不同光合反應的速率常數[56]。如圖3,由Golteev等于2013年提出的Σ方案解釋了光合電子傳遞中上述信號的來源[58]。如圖4,通過該技術使用M-PEA,Goltsev等于2012年發現干旱脅迫下QA-的再氧化受到抑制,由PSII至QA的電子傳遞量子產率下降同時OJIP曲線快相部分受到抑制[59]。

      1603329640996777.png


      3. Σ方案解釋光合電子傳遞鏈中PF、DFmr820信號來源[58]。

      框表示光合結構構件。綠色箭頭表示可以測量的物理信號,紅色箭頭表示根據這些信號重新計算的電子和能量流。信號:DF,延遲熒光;PF,即時熒光;MR,調制反射;RR,遠紅光(735nm)反射。

      電子流:TR,能量俘獲;E21,PSII天線到PSI的能量遷移(溢出);ED,來自內部供體的水或中間供體(ID)向PSII的電子供應;RE,通過PSINADP的電子流;CE,環式電子流。

      RC1*RC2*分別是PSIPSII的反應中心葉綠素,其他縮略語是光合光反應的經典Z方案的標準縮寫。

      1603329683822954.png

      4. JIP-test參數和延遲熒光參數I1/I2,該數據根據1184組不同含水量離體大豆葉片測量[59]。
      * 雷達圖顯示了根據不同RWC的葉片計算出的參數。對于每個組,取50片相似RWC的葉片測量值的平均值,并標準化為100%RWC時的值。
      I1/I2DF延遲熒光誘導曲線快速階段延遲熒光最大振幅的比值[60]。雷達圖生動地表示了干旱對光合機械的影響。每一個干旱等級都由一個多邊形表示,其角點對應于相對(相對于對照全水化葉的值)JIP參數,以及DFI1/I2)誘導曲線上的兩個峰值的比值。這個比率I1/I2被發現與PSII中的電子流成反比[61]。光合機構的功能狀態可以看作是一個幾何圖形,其形狀是干旱脅迫所特有的。它對不同的干旱程度很敏感,所選參數的雷達圖可直接用于RWC的經驗預測。

      本文內容源自《Emerging Technologies and Management of Crop Stress Tolerance A Sustainable Approach》Volume 2,Edited by Parvaiz Ahmad and Saiema Rasool. 

      CHAPTER 15——Kalaji H M ,  Jajoo A ,  Oukarroum A , et al. The Use of Chlorophyll Fluorescence Kinetics Analysis to Study the Performance of Photosynthetic Machinery in Plants[J]. Emerging Technologies and Management of Crop Stress Tolerance, 2014:347-384.

      1603329711687432.png

      參考文獻:

      [1] Monteiro,J., Prado, C., 2006. Apparent carboxylation efficiency and relative stomataland mesophyll limitations of photosynthesis in an evergreen cerrado speciesduring water stress. Photosynthetica 44 (1), 39 - 45.

      [2] Rampino,P., Pataleo, S., Gerardi, C., Mita, G., Perrotta, C., 2006. Drought stressresponse in wheat: physiological and molecular analysis of resistant andsensitive genotypes. Plant Cell Environ. 29 (12), 2143 - 2152.

      [3] Yin, C.,Berninger, F., Li, C., 2006. Photosynthetic responses of Populus przewalskisubjected to drought stress. Photosynthetica 44 (1), 62 - 68.

      [4] Hura,T., Grzesiak, S., Hura, K., Thiemt, E., Tokarz, K., We˛dzony, M., 2007.Physiological and biochemical tools useful in drought - tolerance detection ingenotypes of winter triticale: accumulation of ferulic acid correlates withdrought tolerance. Ann. Bot. 100 (4), 767 - 775.

      [5] Zhou,Y., Lam, H.M., Zhang, J., 2007. Inhibition of photosynthesis and energydissipation induced by water and high light stresses in rice. J. Exp. Bot. 58(5), 1207 - 1217.

      [6] Medrano,H., Escalona, J., Bota, J., Gulias, J., Flexas, J., 2002. Regulation ofphotosynthesis of C3 plants in response to progressive drought: stomatalconductance as a reference parameter. Ann. Bot. 89 (7), 895 - 905.

      [7] Chaves,M., Oliveira, M., 2004. Mechanisms underlying plant resilience to waterdeficits: prospects for water - saving agriculture. J. Exp. Bot. 55 (407), 2365- 2384.

      [8] Matorin,D., Ortoidze, T., Nikolaev, G., Venediktov, P., Rubin, A., 1982. Effects ofdehydration on electron transport activity in chloroplasts [peas].Photosynthetica 16 (2), 226 - 233.

      [9] Cornic,G., Massacci, A., 1996. Leaf photosynthesis under drought stress. In: Baker,N.R. (Ed.), Photosynthesis and the Environment. Kluwer Academic Publishers, pp.347 - 366.

      [10] Mullet,J.E., Whitsitt, M.S., 1996. Plant cellular responses to water deficits. PlantGrowth Regulator 20, 119 - 124.

      [11] Wright,H., DeLong, J., Lada, R., Prange, R., 2009. The relationship between waterstatus and chlorophyll a fluorescence in grapes (Vitis spp.). Postharvest Biol.Technol. 51 (2), 193 - 199.

      [12] Zheng,C., Jiang, D., Liu, F., Dai, T., Jing, Q., Cao, W., 2009. Effects of salt andwaterlogging stresses and their combination on leaf photosynthesis, chloroplastATP synthesis, and antioxidant capacity in wheat. Plant Sci. 176 (4), 575 -582.

      [13] Hussein,M.M., Abd El - Kader, A.A., Mona, A.M.S., 2009. Mineral status of plant shootsand grains of barley under foliar fertilization and water stress. Res. J.Agric. Biol. Sci. 5, 108 - 115.

      [14] Liu, W.- J., Chen, Y. - E., Tian, W. - J., Du, J. - B., Zhang, Z. - W., Xu, F., etal., 2009. Dephosphorylation of photosystem II proteins and phosphorylation ofCP29 in barley photosynthetic membranes as a response to water stress. Biochim.Biophys. Acta 1787 (10), 1238 - 1245.

      [15] VanRensburg, L., Krüger, G.,1993. Differential inhibition of photosynthesis (in vivo and in vitro), andchanges in chlorophyll a fluorescence induction kinetics of four tobaccocultivars under drought stress. J. Plant Physiol. 141 (3), 357 - 365.

      [16] Souza,R.P., Machado, E.C., Silva, J.A.B., Lagaa, A.M.M.A.,Silveira, J.A.G., 2004. Photosynthetic gas exchange, chlorophyll fluorescenceand some associated metabolic changes in cowpea (Vigna unguiculata)during water stress and recovery. Environ. Exp. Bot. 51 (1), 45 - 56.

      [17] Lauriano,J.A., Ramalho, J.C., Lidon, F.C., C′eu matos, M., 2006. Mechanisms of energydissipation in peanut under water stress. Photosynthetica 44 (3), 404 - 410.

      [18] Gomes,F.P., Oliva, M.A., Mielke, M.S., de Almeida, A - AF, Leite, H.G., Aquino, L.A.,2008. Photosynthetic limitations in leaves of young Brazilian Green Dwarfcoconut (Cocos nucifera L. “nana”) palm under well - watered conditions orrecovering from drought stress. Environ. Exp. Bot. 62 (3), 195 - 204.

      [19] Guha,A., Sengupta, D., Reddy, A.R., 2013. Polyphasic chlorophyll a fluorescencekinetics and leaf protein analyses to track dynamics of photosyntheticperformance in mulberry during progressive drought. J. Photochem. Photobiol. B,Biol. 119, 71 - 83.

      [20] Paknejad,F., Nasri, M., Moghadam, H.R.T., Zahedi, H., Alahmadi, M.J., 2007. Effects ofdrought stress on chlorophyll fluorescence parameters, chlorophyll content andgrain yield of wheat cultivars. J. Biol. Sci. 7, 841 - 847.

      [21] Guóth, A.,Tari, I., Gall′e, A′., Csisz′ar, J., Horv′ath, F., P′ecsv′aradi, A., Cseuz, L.,Erdei, L., 2009a. Chlorophyll a fluorescence induction parameters of flagleaves characterize genotypes and not the drought tolerance of wheat duringgrain filling under water deficit. Acta Biol. Szeged. 53, 1 - 7.

      [22] Guóth,A., Tari, I., Gall′e, A′., Csisz′ar, J., P′ecsv′aradi, A., Cseuz, L., Erdei,L., 2009b. Comparison of the drought stress responses of tolerant and sensitivewheat cultivars during grain filling: changes in flag leaf photosyntheticactivity, ABA levels, and grain yield. J. Plant Growth Regul. 28 (2), 167 -176.

      [23] Sofo,A., Dichio, B., Montanaro, G., Xiloyannis, C., 2009. Photosynthetic performanceand light response of two olive cultivars under different water and lightregimes. Photosynthetica 47 (4), 602 - 608.

      [24] Hamerlynck,E.P., Huxman, T.E., 2009. Ecophysiology of two Sonoran Desert evergreen shrubsduring extreme drought. J. Arid Environ. 73 (4 - 5), 582 - 585.

      [25] Peeva,V., Cornic, G., 2009. Leaf photosynthesis of Haberlea rhodopensis before andduring drought. Environ. Exp. Bot. 65 (2 - 3), 310 - 318.

      [26] Ohashi,Y., Nakayama, N., Saneoka, H., Fujita, K., 2006. Effects of drought stress onphotosynthetic gas exchange, chlorophyll fluorescence and stem diameter ofsoybean plants. Biol. Plant. 50 (1), 138 - 141.

      [27] Zivcak,M., Olsovska, K., Brestic, M., Slabbert, M.M., 2013. Critical temperaturederived from the selected chlorophyll a fluorescence parameters of indigenousvegetable species of South Africa treated with high temperature. PhotosynthesisResearch for Food, Fuel and the Future. Springer, Berlin Heidelberg, pp. 628 -632.

      [28] Zivcak,M., Brestic, M., Balatova, Z., Drevenakova, P., Olsovska, K., Kalaji, H.M., etal., 2013. Photosynthetic electron transport and specific photoprotectiveresponses in wheat leaves under drought stress. Photosynth. Res. 117, 529 -546.

      [29] Dobra,J., Motyka, V., Dobrev, P., Malbeck, J., Prasil, I.T., Haisel, D., et al.,2010. Comparison of hormonal responses to heat, drought and combined stress intobacco plants with elevated proline content. J. Plant Physiol. 167 (16), 1360- 1370.

      [30] Silva,E.N., Ferreira - Silva, S.L., Fontenele, A.d.V., Ribeiro, R.V., Vi′egas, R.A.,Silveira, J.A.G., 2010. Photosynthetic changes and protective mechanismsagainst oxidative damage subjected to isolated and combined drought and heatstresses in Jatropha curcas plants. J. Plant Physiol. 167 (14), 1157 - 1164.

      [31] Oukarroum,A., El Madidi, S., Strasser, R., 2012. Exogenous glycine betaine and proline playa protective role in heat - stressed barley leaves (Hordeum vulgare L.): achlorophyll a fluorescence study. Plant Biosyst. 146 (4), 1037 - 1043.

      [32] Havaux,M., 1992. Stress tolerance of photosystem II in vivo antagonistic effects ofwater, heat, and photoinhibition stresses. Plant Physiol. 100 (1), 424 - 432.

      [33] Lu, C.,Zhang, J., 1999. Effects of water stress on photosystem II photochemistry andits thermostability in wheat plants. J. Exp. Bot. 50 (336), 1199 - 1206.

      [34] Ashraf,M., Foolad, M., 2007. Roles of glycine betaine and proline in improving plantabiotic stress resistance.Environ. Exp. Bot. 59 (2), 206 - 216.

      [35] Bolhàr -Nordenkampf, H., Ö quist, G., 1993. Chlorophyllfluorescence as a tool in photosynthesis research. In: Hall, D.O., Scurlock,J.M.O., Bolhàr - Nordenkampf, H.R., Leegood, R.C., Long, S.P. (Eds.),Photosynthesis and Production in a Changing Environment: A Field and LaboratoryManual. Chapman and Hall, London, UK, pp. 193 - 206.

      [36] Schweiger,J., Lang, M., Lichtenthaler, H.K., 1996. Differences in fluorescence excitationspectra of leaves between stressed and non - stressed plants. J. Plant Physiol.148 (5), 536 - 547.

      [37] Yordanov,I., Tsonev, T., Goltsev, V., Kruleva, L., Velikova, V., 1997. Interactiveeffect of water deficit and high temperature on photosynthesis of sunflower andmaize plants. 1. Changes in parameters of chlorophyll fluorescence inductionkinetics and fluorescence quenching. Photosynthetica 33 (3 - 4), 391 - 402.

      [38] Munné -Bosch, S., Falara, V., Pateraki, I., Lo′pez - Carbonell, M., Cela, J.,Kanellis, A.K., 2009. Physiological and molecular responses of the isoprenoidbiosynthetic pathway in a drought - resistant Mediterranean shrub, Cistuscreticus exposed to water deficit. J. Plant Physiol. 166 (2), 136 - 145.

      [39] VanRensburg, L., Kruger, G., Eggenberg, P., Strasser, R., 1996. Can screeningcriteria for drought resistance in Nicotiana tabacum L be derived from thepolyphasic rise of the chlorophyll a fluorescence transient (OJIP)? S. Afr. J.Bot. 62 (6), 337 - 341.

      [40] Oukarroum,A., El Madidi, S., Strasser, R.J., 2006. Drought stress induced in barleycultivars (Hordeurn vulgare L.) by polyethylene glycol, probed bygermination, root length and chlorophyll a fluorescence rise (OJIP). Arch. Sci.59 (1), 65 - 74.

      [41] Gomes,M.T.G., da Luz, A.C., dos Santos, M.R., do Carmo Pimentel Batitucci, M., Silva,D.M., Falqueto, A. R., 2012. Drought tolerance of passion fruit plants assessedby the OJIP chlorophyll a fluorescence transient. Sci. Hortic. 142, 49 - 56.

      [42] Oukarroum,A., Madidi, S.E., Schansker, G., Strasser, R.J., 2007. Probing the responses ofbarley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescenceOLKJIP under drought stress and re - watering. Environ. Exp. Bot. 60 (3), 438 -446.

      [43] Strasser,R.J., Stirbet, A.D., 1998. Heterogeneity of photosystem II probed by thenumerically simulated chlorophyll a fluorescence rise (O - J - I - P). Math.Comput. Simul. 48 (1), 3 - 9.

      [44] Guissé,B., Srivastava, A., Strasser, R., 1995. The polyphasic rise of the chlorophylla fluorescence (OKJIP) in heat stressed leaves. Arch. Sci. Geneve 48, 147 -160.

      [45] Strasser,R.J., Tsimilli - Michael, M., Srivastava, A., 2004. Analysis of the chlorophylla fluorescence transient. In: Papageorgiou, G., Govindjee (Eds.), Advances inPhotosynthesis and Respiration. Chlorophyll a Fluorescence: A Signature ofPhotosynthesis. Springer, Dordrecht, The Netherlands, pp. 321 - 362.

      [46] Zivcak,M., Brestic, M., Olsovska, K., Slamka, P., 2008. Performance Index as asensitive indicator of water stress in Triticum aestivum. Plant Soil Environ.54, 133 - 139.

      [47] Zivcak,M., Brestic, M., Olsovska, K., 2008. Physiological parameters useful inscreening for improved tolerance to drought in winter wheat (Triticum aestivumL.). Cereal Res. Commun. 36, 1943 - 1946.

      [48] Boureima,S., Oukarroum, A., Diouf, M., Cisse, N., Van Damme, P., 2012. Screening fordrought tolerance in mutant germplasm of sesame (Sesamum indicum) probing bychlorophyll a fluorescence. Environ. Exp. Bot. 81, 37 - 43.

      [49] Jedmowski,C., Ashoub, A., Bru¨ggemann, W., 2013. Reactions of Egyptian landraces ofHordeum vulgare and Sorghum bicolor to drought stress, evaluated by the OJIPfluorescence transient analysis. Acta Physiol. Plant. 35 (2), 345 - 354.

      [50] VanHeerden, P.D.R., Swanepoel, J.W., Kru¨ger, G.H.J., 2007. Modulation ofphotosynthesis by drought in two desert scrub species exhibiting C3- mode CO2 assimilation. Environ. Exp. Bot. 61 (2), 124 - 136.

      [51] Schreiber,U., Neubauer, C., Klughammer, C., 1989. Devices and methods for room -temperature fluorescence analysis. Philos. Trans. R. Soc. Lond., B, Biol. Sci.323 (1216), 241 - 251.

      [52] Schansker,G., Srivastava, A., Govindjee, Strasser, R.J., 2003. Characterization of the820 - nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP)in pea leaves. Funct. Plant Biol. 30 (7), 785 - 796.

      [53] Ceppi,M.G., Oukarroum, A., C¸ ic¸ek, N., Strasser, R.J., Schansker, G., 2012. The IPamplitude of the fluorescence rise OJIP is sensitive to changes in thephotosystem I content of leaves: a study on plants exposed to magnesium andsulfate deficiencies, drought stress and salt stress. Physiol. Plant. 144 (3),277 - 288.

      [54] Oukarroum,A., Schansker, G., Strasser, R.J., 2009. Drought stress effects on photosystemI content and photosystem II thermotolerance analyzed using Chl a fluorescencekinetics in barley varieties differing in their drought tolerance. Physiol.Plant. 137 (2), 188 - 199.

      [55] Goltsev,V., Zaharieva, I., Chernev, P., Strasser, R.J., 2009. Delayed chlorophyllfluorescence as a monitor for physiological state of photosynthetic apparatus.Biotechnol. Biotechnol. Equip. 23, 452 - 457 (special edition).

      [56] Strasser,R.J., Tsimilli - Michael, M., Qiang, S., Goltsev, V., 2010. Simultaneous invivo recording of prompt and delayed fluorescence and 820 - nm reflectionchanges during drying and after rehydration of the resurrection plant Haberlearhodopensis. Biochim. Biophys. Acta 1797, 1313 - 1326.

      [57] Kalaji,H.M., Carpentier, R., Allakhverdiev, S.I., Bosa, K., 2012. Fluorescenceparameters as early indicators of light stress in barley. J. Photochem.Photobiol. B, Biol. 112, 1 - 6.

      [58] Goltsev,V., Gurmanova, M., Kouzmanova, M., Yordanov, I., Qiang, S., Pentland, A., etal., 2010. Analysis of dark drops, dark - induced changes in chlorophyllfluorescence during the recording of the OJIP transient. In: Kuang, T., Lu, C.,Zhang, L. (Eds.), Photosynthesis Research for Food, Fuel and Future. Springer -Verlag, Berlin, Heidelberg, pp. 179 - 183.

      [59] Goltsev,V., Zaharieva, I., Chernev, P., Kouzmanova, M., Kalaji, H.M., Yordanov, I., etal., 2012. Drought - induced modifications of photosynthetic electron transportin intact leaves: analysis and use of neural net - works as a tool for a rapidnon - invasive estimation. Biochim. Biophys. Acta 1817 (8), 1490 - 1498.

      [60] Goltsev,V., Chernev, P., Zaharieva, I., Lambrev, P., Strasser, R.J., 2005. Kinetics ofdelayed chlorophyll a fluorescence registered in milliseconds time range.Photosynth. Res. 84, 209 - 215.

      [61] Zaharieva,I., Taneva, S.G., Goltsev, V., 2001. Effect of temperature on the luminescentcharacteristics in leaves of Arabidopsis mutants with decreased unsaturation ofthe membrane lipids. Bulg J. Plant Physiol. 27, 3 - 19.



      seo seo
      丁香婷婷激情,激情综合五月亚洲婷婷,婷婷激情久久,黄色资源在线

      <dfn id="zrplh"><dfn id="zrplh"></dfn></dfn>

      <pre id="zrplh"><track id="zrplh"><progress id="zrplh"></progress></track></pre>
        <sub id="zrplh"></sub>
        <listing id="zrplh"><menuitem id="zrplh"></menuitem></listing>

        <track id="zrplh"></track>

        <noframes id="zrplh">

          <form id="zrplh"><sub id="zrplh"></sub></form>